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6. Video Playback

Please see our project page for video playback:
https://genechou.com/kfcw/

7. Training Details
7.1. Dimensions

We resize and center crop all internet photos and video
frames to 3 x 512 x 512. The VAE downsamples them
to C' x 64 x 64, and each image is then patchified with a
patch size of 2, to 1024 x 4C'. We pass the patches through
a linear layer to get 1024 x D. Our sinusoidal positional
embeddings, frame indices, and CLIP embeddings are all
resized through a linear layer and repeated to the same di-
mensions for addition. For instance, each CLIP embedding
of an image has shape 1 x 1024. We pass it through a linear
layer to match the shape 1 x D, and repeat it to 1024 x D.

Classifier-free guidance. To perform classifier-free guid-
ance, we set all the clean patches (blue patches in Fig. 3) to
have diffusion timestep = 999 with a probability of 10%,
and diffusion timestep = 0 otherwise. We remove text-
conditioning completely, so CFG is only applied to the con-
dition image patches. During testing, we set the CFG scale to
1.5. We observed unnatural saturation at higher CFG scales.

7.2. Multiview Inpainting Details

Data loading. MegaScenes contains categories of scenes
that are labeled by Wikimedia Commons. We sample images
from the same category. One sampled batch of images may
contain no overlap or noisy images that do not belong to
the category, but on the whole this did not affect results.
Additional filtering and annotations could make training
more stable, if needed.

Our method can take an arbitrary number of condition
images, but during experiments, we found two conditions
to be a reasonable balance between quality and compute.
Training with two conditions led to noticeable improvements
from only one condition, but adding more images did not
seem to have a significant effect. Thus, we fixed our number
of conditions to be 2, for a total of three input images per
iteration.

Segmentation. Our video datasets (DL3DV and Rel0k) do
not contain dynamic objects, so we also removed dynamic
objects from internet photos since the model cannot handle
motion, such as people walking. We apply DINOv2 [48] for
semantic segmentation on the RGB images and mask out all
people and vehicles. Since diffusion is performed in latent

space, we downsample the masked RGB regions to latent
space, and dropout these pixels (i.e. we do not input them
to the transformer). This is done for the conditions as well
as the target image. When calculating the loss between the
denoised and ground truth patches, we also skip the patches
that are masked.

We believe that with more video data, we can model
dynamic objects realistically, and remove the requirement
for segmentation.

Ilumination. We also condition each image patch on its
CLIP embedding, following the process described in the
main paper for view interpolation. Even though illumination
information can be acquired from the 20% clean pixels in the
target, we add the CLIP embedding for consistency across
the two objectives.

7.3. View Interpolation Details

Training augmentation. As mentioned in the main paper,
we perform color jittering on the condition images such that
illumination information can only be inferred from the CLIP
embedding. Specifically we set

T.ColorJitter (brightness=0.75,
- contrast=0.5, saturation=0.6,
— hue=0.5)

Additionally, to simulate segmentation, we randomly drop
patches from the condition images (i.e. we do not input them
to the transformer).

Data loading. Since we only sample 15 frames between
viewpoints, taking neighboring frames from the raw video re-
sulted in excessively small viewpoint changes. We opted for
a simpler approach: using the pre-selected frames provided
by the datasets. Specifically, we used the frames registered in
COLMAP for DL3DV and the frames with pose information
for Re10k. We did not use the poses, but the images were
easy to download and process. Although the selected frames
have different sampling rates, our model generalized to both
wide and narrow baselines without any issues.

8. Experiment and Evaluation Details
8.1. User Study

For our study, we randomly sampled 25 scenes: 15 from the
Phototourism dataset, and 10 from Rel0k. Our method is
compared to each baseline via pairwise comparisons. Users
are shown two videos generated from the same input frames
and are asked to select which method they prefer according
to each evaluation criterion (or the user can select “Cannot


https://genechou.com/kfcw/

Scene 1

Source Image 1

Video 1

Source Image 2

Video 2

Note: The green border denotes the first video frame, which should correspond to the first source image.
The red border denotes the last video frame, which should correspond to the last source image.
The video auto-loops back to green after the last frame.

Consistency

Select the video that appears most consistent overall. Which video maintains uniform illumination throughout the scene? If illumination changes noticeably between transitions,
the video may lack consistency. Additionally, observe whether objects appear or disappear in ways that seem illogical.

() Video1 () Video2 () Cannot Decide

CameraPath

Select the video that most isti p! a natural

between the source images. Does the video accurately reflect the layout and structure of the scene as

you would expect in real life? If you were physically present, capturing these views, which video best mirrors the path you might take while moving through or around the
scene? If the video hallucinates new buildings as it transitions from one source image to the next, it indicates an unrealistic camera path.

() Video1 () Video2 (O) Cannot Decide

Aesthetics

Select the video with higher overall visual quality -- subjective and up to you. Potential considerations could be sharpness of each frame and whether you prefer dynamic
objects (e.g. people walking). Consistency and CameraPath can factor into the decision as well.

() Video1 () Video2 () Cannot Decide

Figure 9. Example scene from our user study interface. We provided detailed descriptions for three criteria: Consistency, CameraPath, and
Aesthetics. For each scene, users are asked to express a preference between our results and those of a random baseline.

Decide”). We show the user study interface in Fig. 9, which
also includes detailed descriptions of each criterion. When
tallying the results, a direct vote counts as 1 point, and a
“Cannot Decide” option counts as 0.5 votes each.

8.2. Ablation Setup: Video-only and Long-video

The video-only ablation follows the same procedure as de-
scribed in Sec. 7.3. For long-video, we randomly sample
j €10,1,2,3,4,5] and skip j frames when sampling from
the video sequence. This means the video length can be
extended up to 5 times, but each frame in a video sequence

is still spaced out uniformly. As shown in the main paper,
we find that this still does not generalize as well as the mul-
tiview inpainting objective, likely because internet photos
contain more diverse viewpoints, such as extreme rotations
and zooming levels, that teach the model to find correspon-
dences between images even when there is minimal overlap.

8.3. InstantSplat Training and Testing

We follow the official repository of InstantSplat for both
training and rendering images. For training, we simply pro-
vide either the original input photos from our Phototourism



and Rel0k test sets, or our generated frames from the same
input photos. However, InstantSplat does not directly take
camera poses as input, but rather uses DUSt3R to initialize
poses. Thus, we must use the same coordinate system during
testing in order to render the images. We follow the process
in the InstantSplat repository. First, we store the point cloud
initialized by the training images. Then, during testing, we
run DUSt3R again on both the training and testing images.
We align only the points from the training images to the
stored point cloud, to get a transformation. Then, we can ren-
der the testing images by transforming the estimated poses
by DUSt3R to the 3DGS model’s coordinate frame.

9. Limitations and Future Work

Input keyframes with no overlap. Our method is very ro-
bust to extreme viewpoint changes, but it fails when there is
no overlap between input keyframes. Sometimes the model
performs morphing, similar to Luma’s artifacts; other times
it attempts to rotate or zoom to link images but produces
blurry transitions. We believe solving this task might require
different training schemes as it relies heavily on extrapola-
tion rather than finding correspondences.

Fine-grained illumination. To control illumination we use
CLIP embeddings, which likely only contain coarse informa-
tion, since its training captions contain terms like “cloudy,”
“sunny,” rather than physical properties such as sun angles.
Thus, even though we show that this method is capable of
controlling coarse illumination, such as the general color
scale, there are many possibilities for future work for fine-
grained control.

Removing occlusions. We remove occlusions through seg-
mentation, but there can be artifacts when the removal is not
accurate. More accurate masks, such as a semantic version
of Segment Anything, or directly modeling dynamic objects,
would be two possible ways to handling this issue.
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